Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Pharm ; 646: 123442, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37774758

RESUMO

The diabetic wound is a prevalent and serious complication of diabetes, which easily deteriorates due to susceptibility to infection and difficulty in healing, causing a high risk of amputation and economic burden to patients. Bacterial infection, persistent excessive inflammation, and cellular and angiogenesis disorders are the main reasons for the difficulty of diabetic wound healing. In this study, glycerol monooleate (GMO) was used to prepare lyotropic liquid crystal hydrogel (LLC) containing the natural antimicrobial peptide LL37 and carbenoxolone (CBX) to achieve antibacterial, anti-inflammation, and healing promotion for the treatment of diabetic wounds. The shear-thinning properties of the LLC precursor solution allowed it to be administered in the form of a spray, which perfectly fitted the shape of the wound and transformed into a gel after absorbing wound exudate to act as a wound protective barrier. The faster release of LL37 realized rapid sterilization of wounds, controlled the source of inflammation, and accelerated wound healing. The inflammatory signaling pathway was blocked by the subsequently released CBX, and the spread of the inflammatory response was inhibited and then further weakened. In addition, CBX down-regulated connexin (Cx43) to assist LL37 to promote cell migration and proliferation better. Combined with the pro-angiogenic effect of LL37, the healing of diabetic wounds was significantly accelerated. All these advantages made LL37-CBX-LLC a promising approach for the treatment of chronic diabetic wounds.

2.
Curr Issues Mol Biol ; 45(5): 4375-4388, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37232747

RESUMO

AIM: Primary malignant bone tumor osteosarcoma can metastasize to the lung. Diminishing lung metastasis would positively affect the prognosis of patients. Our previous studies demonstrated that highly metastatic osteosarcoma cell lines are significantly softer than low-metastasis cell lines. We therefore hypothesized that increasing cell stiffness would suppress metastasis by reducing cell motility. In this study, we tested whether carbenoxolone (CBX) increases the stiffness of LM8 osteosarcoma cells and prevents lung metastasis in vivo. METHODS: We evaluated the actin cytoskeletal structure and polymerization of CBX-treated LM8 cells using actin staining. Cell stiffness was measured using atomic force microscopy. Metastasis-related cell functions were analyzed using cell proliferation, wound healing, invasion, and cell adhesion assays. Furthermore, lung metastasis was examined in LM8-bearing mice administered with CBX. RESULTS: Treatment with CBX significantly increased actin staining intensity and stiffness of LM8 cells compared with vehicle-treated LM8 cells (p < 0.01). In Young's modulus images, compared with the control group, rigid fibrillate structures were observed in the CBX treatment group. CBX suppressed cell migration, invasion, and adhesion but not cell proliferation. The number of LM8 lung metastases were significantly reduced in the CBX administration group compared with the control group (p < 0.01). CONCLUSION: In this study, we demonstrated that CBX increases tumor cell stiffness and significantly reduces lung metastasis. Our study is the first to provide evidence that reducing cell motility by increasing cell stiffness might be effective as a novel anti-metastasis approach in vivo.

3.
J Diabetes Metab Disord ; 22(1): 657-672, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37255841

RESUMO

Purpose: The current study is aimed to perform structure-based screening of FDA-approved drugs that can act as novel inhibitor of the 11beta- hydroxysteroid dehydrogenase type 1 (11ß-HSD1) enzyme. Methods: Structural analogs of carbenoxolone (CBX) were selected from DrugBank database and their Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) parameters were investigated by SwissADME. Molecular docking of CBX analogs against 11ß-HSD1 was performed by AutoDock tool, their binding patterns were visualized using PyMOL and the interacting amino acids were determined by ProteinPlus tool. Molecular dynamics simulation was performed on the docked structure of 11ß-HSD1 (Protein Data Bank (PDB) code: 2ILT) using GROMACS 2018.1. Results: The binding energies of hydrocortisone succinate, medroxyprogesterone acetate, testolactone, hydrocortisone cypionate, deoxycorticosterone acetate, and hydrocortisone probutate were lower than that of substrate corticosterone. The molecular dynamics simulation of 11ß-HSD1 and hydrocortisone cypionate docked structure showed that it formed a stable complex with the inhibitor. The Root mean square deviation (RMSD) of the protein (0.37 ± 0.05 nm) and ligand (0.41 ± 0.06 nm) shows the stability of the ligand-protein interaction. Conclusion: The docking study revealed that hydrocortisone cypionate has a higher binding affinity than carbenoxolone and its other analogs. The molecular dynamics simulation indicated the stability of the docked complex of 11ß-HSD1 and hydrocortisone cypionate. These findings indicate the potential use of this FDA approved drug in the treatment of type 2 diabetes. However, validation by in vitro inhibitory studies and clinical trials on type 2 diabetes patients is essential to confirm the current findings.

4.
J Cancer ; 14(5): 689-706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056395

RESUMO

Pannexin 1 (PANX1) is expressed in many tissue types including tissues of neural origin. Neuroblastoma (NB) is a neural crest-derived malignancy mainly occurring in children. The majority of NB patients present with high-risk disease for which current therapies are ineffective. Here, we show that while PANX1 is expressed in NB of all stages, high PANX1 expression in high-risk NB is associated with a reduced survival probability. PANX1 channel inhibition using probenecid (PBN) or carbenoxolone (CBX) reduced the proliferation of our panel of high-risk NB cell lines. We show that expression of the Y10F PANX1 mutant, which cannot be phosphorylated on tyrosine 10 and acts in a dominant-negative manner, curtailed NB cell proliferation. Furthermore, PBN and CBX treatment halted the growth of NB spheroids and in some cases triggered the regression of established NB spheroids. Finally, both drugs reduced the progression of high-risk NB in vivo. Together our data indicate that PANX1 channels regulate human NB malignant properties and that the use of PBN or CBX may provide a new therapeutic approach for high-risk NB.

5.
Future Med Chem ; 15(4): 333-344, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36946221

RESUMO

Aim: Because of the severe morbidity and mortality of gastric cancer, discovering new candidate drugs has been an urgent issue. The close association between histone deacetylase 6 (HDAC6) and gastric cancer makes the development of HDAC6-targeted anti-gastric cancer drugs a viable idea. Methods & results: Carbenoxolone disodium was identified as a novel HDAC6 inhibitor. Cellular thermal shift assay, surface plasmon resonance assay and molecular docking confirmed its binding ability to HDAC6. Cell viability, wound healing and transwell assays as well as animal studies have demonstrated that carbenoxolone disodium could block the proliferation and migration of gastric cancer cells MGC-803 in vitro and in vivo. Conclusion: This is the first report to indicate that carbenoxolone disodium could be an HDAC6 inhibitor with potential for treatment of gastric cancer.


Assuntos
Histona Desacetilases , Neoplasias , Animais , Desacetilase 6 de Histona , Histona Desacetilases/metabolismo , Carbenoxolona , Simulação de Acoplamento Molecular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química
6.
Biomed Pharmacother ; 159: 114244, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36638594

RESUMO

Obesity is a disorder with an increasing prevalence, which impairs the life quality of patients and intensifies societal health care costs. The development of safe and innovative prevention strategies and therapeutic approaches is thus of great importance. The complex pathophysiology of obesity involves multiple signaling pathways that influence energy metabolism in different tissues. The phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) pathway is critical for the metabolic homeostasis and its function in insulin-sensitive tissues is described in the context of health, obesity and obesity-related complications. The PI3K family participates in the regulation of diverse physiological processes including but not limited to cell growth, survival, differentiation, autophagy, chemotaxis, and metabolism depending on the cellular context. AKT is downstream of PI3K in the insulin signaling pathway, and promotes multiple cellular processes by targeting a plethora of regulatory proteins that control glucose and lipid metabolism. Natural products are essential for prevention and treatment of many human diseases, including obesity. Anti-obesity natural compounds effect multiple pathophysiological mechanisms involved in obesity development. Numerous recent preclinical studies reveal the advances in using plant secondary metabolites to target the PI3K/AKT signaling pathway for obesity management. In this paper the druggability of PI3K as a target for compounds with anti-obesity potential is evaluated. Perspectives on the strategies and limitations for clinical implementation of obesity management using natural compounds modulating the PI3K/AKT pathway are suggested.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Insulina , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Obesidade/metabolismo
7.
Theriogenology ; 195: 159-167, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335719

RESUMO

Recent studies have shown that l-proline (proline) is an antioxidant to protect cells from oxidative stress in vivo and in vitro. Glutathione (GSH) is a major cellular redox regulator involved in controlling redox balance and is regarded as one of the key indices to predict the cytoplasmic maturation of oocytes. The objectives of this study are to investigate the effect of proline on the developmental potential of mouse oocytes and to determine the role of gap junctional communication (GJC) on intraoocyte GSH concentration during in vitro maturation (IVM). Compared with control (0 mmol/L), 0.5 mmol/L proline supplementation enhanced rates of activated oocytes, 2-cell and 4-cell embryos, and blastocysts. Furthermore, 0.25 and 0.5 mmol/L proline supplementation markedly upregulated mRNA expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) in oocytes and cumulus cells, enhanced GSH concentration in oocytes, and reduced reactive oxygen species (ROS) level in oocytes. Interestingly, carbenoxolone disodium salt (CBX) treatment reduced GSH concentration in oocytes and the rate of early embryo development without proline incubation. Notably, CBX-triggered reduction in the rates of the number of 2-cell and 4-cell embryos and blastocysts were rescued by 0.5 mmol/L proline supplementation. Collectively, these results indicate a novel functional role of proline in oocyte cytoplasmic maturation and regulation of glutathione-related redox homeostasis.


Assuntos
Glutamato-Cisteína Ligase , Prolina , Camundongos , Animais , Glutamato-Cisteína Ligase/genética , Oócitos , Oxirredução , Glutationa , Homeostase
8.
Front Mol Neurosci ; 15: 870947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615064

RESUMO

Objective: This study was designed to investigate the influence and mechanism of gap junction carbenoxolone (CBX) on dynamic changes in the spectral power of ripples and fast ripples (FRs) in the hippocampus of chronic epileptic rats. Methods: The lithium-pilocarpine (PILO) status epilepticus (SE) model (PILO group) and the CBX pretreatment model (CBX + PILO group) were established to analyze dynamic changes in the spectral power of ripples and FRs, and the dynamic expression of connexin (CX)26, CX32, CX36, and CX43 in the hippocampus of chronic epileptic rats. Results: Within 28 days after SE, the number of spontaneous recurrent seizures (SRSs) in the PILO group was significantly higher than that in the CBX + PILO group. The average spectral power of FRs in the PILO group was significantly higher than the baseline level at 1 and 7 days after SE. The average spectral power of FRs in the PILO group was significantly higher than that in the CBX + PILO group at 1, 7, and 14 days after SE. Seizures induced an increase in CX43 expression at 1 and 7 days after SE, but had no significant effect on CX26, CX36, or CX32. CBX pretreatment did not affect the expression of CXs in the hippocampus of normal rats, but it inhibited the expression of CX43 in epileptic rats. The number of SRSs at 2 and 4 weeks after SE had the highest correlation with the average spectral power of FRs; the average spectral power of FRs was moderately correlated with the expression of CX43. Conclusion: The results of this study indicate that the energy of FRs may be regulated by its interference with the expression of CX43, and thus, affect seizures. Blocking the expression of CX43 thereby reduces the formation of pathological high-frequency oscillations (HFOs), making it a promising strategy for the treatment of chronic epilepsy.

9.
Biol Pharm Bull ; 45(6): 743-750, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35431287

RESUMO

Asthma is a respiratory disease characterized by heterogeneous chronic airway inflammation. Activation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome is involved in the development of many pulmonary inflammatory diseases. The role and regulatory mechanism of carbenoxolone (CBX) in ovalbumin (OVA)-induced asthma models are not fully clear. Therefore, the study investigated whether CBX ameliorates airway inflammation and remodeling, as well as its mechanism in OVA induced-inflammation in mice. Wright-Giemsa staining was used to count inflammatory cells in bronchoalveolar lavage fluid (BALF). The level of inflammatory cells infiltration, mucus cell proliferation, and collagen deposition in lung tissue were separately assessed by hematoxylin and eosin, periodic acid-Schiff, and Masson trichrome staining, respectively. Airway resistance (AR) was measured by non-invasive airway system. Immunohistochemical assay was used to observe NLRP3 expression area. The expression of nuclear factor-kappaB (NF-κB), p-NF-κB, inhibitor of kappaB (IκB)-α, p-IκB-α, NLRP3, pro-caspase-1, caspase-1, and interleukin (IL)-1ß in lung tissue were measured using quantitative real-time PCR or Western blotting. Our results showed that CBX can significantly attenuate the leukocyte count and the percentage of eosinophils and neutrophils in the BALF, peribronchial inflammation, airway mucus secretion, collagen deposition area, and AR in OVA-induced airway inflammation. In addition, the expression of p-NF-κB, p-IκB-α, NLRP3 and related factors were dramatically alleviated after CBX treatment. These data suggest that CBX has a significant protective effect on allergic airway inflammation by suppressing the activation of NLRP3 inflammasome through NF-κB pathway in asthmatic mice.


Assuntos
Asma , NF-kappa B , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Carbenoxolona/metabolismo , Carbenoxolona/farmacologia , Caspase 1/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovalbumina/farmacologia
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 405-410, 2022 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-35426805

RESUMO

OBJECTIVE: To investigate the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatinresistant testicular cancer cells (I-10/DDP) and the effect of carbenoxolone on the activity of RSL3 against testicular cancer. METHODS: MTT assay was used to evaluate the survival rate of I-10/DDP cells following treatment with RSL3 (1, 2, 4, 8, 16 or 32 µmol/L) alone or in combination with carbenoxolone (100 µmol/L) or after treatment with Fer-1 (2 µmol/L), RSL3 (4 µmol/L), RSL3+Fer-1, RSL3+carbenoxolone (100 µmol/L), or RSL3+Fer-1+carbenoxolone. Colony formation assay was used to assess the proliferation ability of the treated cells; wounding-healing assay and Transwell assay were used to assess the invasion and migration ability of the cells. The expression of GPX4 was detected using Western blotting, the levels of lipid ROS were detected using C11 BODIPY 581/591 fluorescent probe, and the levels of Fe2+ were determined with FerroOrange fluorescent probe. RESULTS: RSL3 dose-dependently decreased the survival rate of I-10/DDP cells, and the combined treatment with 2, 4, or 8 µmol/L RSL3 with carbenoxolone, as compared with RSL3 treatment alone, resulted in significant reduction of the cell survival rate. The combination with carbenoxolone significantly enhanced the inhibitory effect of RSL3 on colony formation, wound healing rate (P=0.005), invasion and migration of the cells (P < 0.001). Fer-1 obviously attenuated the inhibitory effects of RSL3 alone and its combination with carbenoxolone on I-10/DDP cells (P < 0.01). RSL3 treatment significantly decreased GPX4 expression (P=0.001) and increased lipid ROS level (P=0.001) and Fe2+ level in the cells, and these effects were further enhanced by the combined treatment with carbenoxolone (P < 0.01). CONCLUSION: Carbenoxolone enhances the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatin-resistant testicular cancer cells by promoting RSL3-induced ferroptosis.


Assuntos
Ferroptose , Neoplasias Testiculares , Carbenoxolona/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Corantes Fluorescentes/farmacologia , Humanos , Lipídeos , Masculino , Neoplasias Embrionárias de Células Germinativas , Espécies Reativas de Oxigênio
11.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054848

RESUMO

Gap junctions (GJs) are intercellular junctions that allow the direct transfer of ions and small molecules between neighboring cells, and GJs between astrocytes play an important role in the development of various pathologies of the brain, including regulation of the pathological neuronal synchronization underlying epileptic seizures. Recently, we found that a pathological change is observed in astrocytes during the ictal and interictal phases of 4-aminopyridin (4-AP)-elicited epileptic activity in vitro, which was correlated with neuronal synchronization and extracellular epileptic electrical activity. This finding raises the question: Does this signal depend on GJs between astrocytes? In this study we investigated the effect of the GJ blocker, carbenoxolone (CBX), on epileptic activity in vitro and in vivo. Based on the results obtained, we came to the conclusion that the astrocytic syncytium formed by GJ-associated astrocytes, which is responsible for the regulation of potassium, affects the formation of epileptic activity in astrocytes in vitro and epileptic seizure onset. This effect is probably an important, but not the only, mechanism by which CBX suppresses epileptic activity. It is likely that the mechanisms of selective inhibition of GJs between astrocytes will show important translational benefits in anti-epileptic therapies.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbenoxolona/uso terapêutico , Epilepsia/tratamento farmacológico , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Eletrocorticografia , Epilepsia/patologia , Epilepsia/fisiopatologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Hipocampo/patologia , Humanos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Potássio/metabolismo
12.
J Oral Rehabil ; 49(2): 207-218, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34042200

RESUMO

BACKGROUND: Astrocytes in the rostral ventromedial medulla (RVM) contribute to descending pain modulation, but their role in oro-facial pain induced by persistent experimental dental occlusal interference (PEOI) or following EOI removal (REOI) is unknown. OBJECTIVE: To explore the involvement of RVM astrocytes in PEOI-induced oro-facial hyperalgesia or its maintenance following REOI. METHODS: Male rats were randomly assigned into five groups: sham-EOI, postoperative day 6 and 14 of PEOI (PEOI 6 d and PEOI 14 d), postoperative day 6 following REOI on day 3 (REOI 3 d) and postoperative day 14 following REOI on day 8 (REOI 8 d). The nociceptive head withdrawal threshold (HWT) and activities of RVM ON- or OFF-cells were recorded before and after intra-RVM astrocyte gap junction blocker carbenoxolone (CBX) microinjection. RVM astrocytes were labelled immunohistochemically with glial fibrillary acidic protein (GFAP) and analysed semi-quantitatively. RESULTS: Persistent experimental dental occlusal interference-induced oro-facial hyperalgesia, as reflected in decreased HWTs, was partially inhibited by REOI at day 3 but not at day 8 after EOI placement. Increased GFAP-staining area occurred only in REOI 8 d group in which CBX could inhibit the maintained hyperalgesia; CBX was ineffective in inhibiting hyperalgesia in PEOI 14 d group. OFF-cell activities showed no change, but the spontaneous activity and responses of ON-cells were significantly enhanced that could be suppressed by CBX in REOI 8 d group. CONCLUSION: Rostral ventromedial medulla astrocytes may not participate in PEOI-induced oro-facial hyperalgesia or hyperalgesia inhibition by early REOI but are involved in the maintenance of oro-facial hyperalgesia by late REOI.


Assuntos
Astrócitos , Hiperalgesia , Animais , Masculino , Bulbo , Ratos , Ratos Sprague-Dawley
13.
Acta Pharmacol Sin ; 43(1): 86-95, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33758356

RESUMO

Ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in clinic. The activation of NLRP3 inflammasome is associated with inflammation and renal injury in I/R-induced AKI. In the current study we explored the molecular and cellular mechanisms for NLRP3 inflammasome activation following renal I/R. Mice were subjected to I/R renal injury by clamping bilateral renal pedicles. We showed that I/R injury markedly increased caspase-11 expression and the cleavage of pannexin 1 (panx1) in the kidneys accompanied by NLRP3 inflammasome activation evidenced by the activation of caspase-1 and interlukin-1ß (IL-1ß) maturation. In Casp-11-/- mice, I/R-induced panx1 cleavage, NLRP3 inflammasome activation as well as renal functional deterioration and tubular morphological changes were significantly attenuated. In cultured primary tubular cells (PTCs) and NRK-52E cells, hypoxia/reoxygenation (H/R) markedly increased caspase-11 expression, NLRP3 inflammasome activation, IL-1ß maturation and panx1 cleavage. Knockdown of caspase-11 attenuated all those changes; similar effects were observed in PTCs isolated from Casp-11-/- mice. In NRK-52E cells, overexpression of caspase-11 promoted panx1 cleavage; pretreatment with panx1 inhibitor carbenoxolone or knockdown of panx1 significantly attenuated H/R-induced intracellular ATP reduction, extracellular ATP elevation and NLRP3 inflammasome activation without apparent influence on H/R-induced caspase-11 increase; pretreatment with P2X7 receptor inhibitor AZD9056 also attenuated NLRP3 inflammasome activation. The above results demonstrate that the cleavage of panx1 by upregulated caspase-11 is involved in facilitating ATP release and then NLRP3 inflammasome activation in I/R-induced AKI. This study provides new insight into the molecular mechanism of NLRP3 inflammasome activation in AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Caspases Iniciadoras/metabolismo , Conexinas/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/patologia , Animais , Caspases Iniciadoras/deficiência , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Traumatismo por Reperfusão/patologia , Relação Estrutura-Atividade
14.
Can J Physiol Pharmacol ; 100(5): 412-421, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34855519

RESUMO

Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including central obesity, hypertension, insulin resistance, dyslipidemia, and hyperglyemia. MetS is found to be a positive predictor of cardiovascular morbidity and mortality. The present study was planned to test the efficacy of vitamin D3 supplementation as compared with cortisol inhibition on MetS parameters. Wistar rats were allocated into four groups: control, untreated MetS, and MetS treated with either vitamin D3 (10 µg/kg) or carbenoxolone (50 mg/kg). MetS was induced by combination of high-fat diet and oral fructose. After the induction period (8 weeks), MetS was confirmed, and treatment modalities started for a further 4 weeks. Compared with untreated MetS, vitamin D3- and carbenoxolone-treated rats showed significant reduction in blood pressure, body mass index, Lee index, waist circumference, retroperitoneal fat, and improvement of dyslipidemia. Meanwhile, treatment with carbenoxolone significantly lowered the elevated liver enzymes, and vitamin D3 resulted in improved insulin sensitivity, enhanced glucose uptake by muscles, and replenished glycogen content in the liver and muscles near control levels. In conclusion, although treatment with vitamin D3 or carbenoxolone reduced the risk factors associated with MetS, vitamin D3 was effective in ameliorating insulin resistance which is the hallmark of MetS.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Glicemia/metabolismo , Carbenoxolona/farmacologia , Carbenoxolona/uso terapêutico , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Síndrome Metabólica/metabolismo , Ratos , Ratos Wistar
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-936330

RESUMO

OBJECTIVE@#To investigate the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatinresistant testicular cancer cells (I-10/DDP) and the effect of carbenoxolone on the activity of RSL3 against testicular cancer.@*METHODS@#MTT assay was used to evaluate the survival rate of I-10/DDP cells following treatment with RSL3 (1, 2, 4, 8, 16 or 32 μmol/L) alone or in combination with carbenoxolone (100 μmol/L) or after treatment with Fer-1 (2 μmol/L), RSL3 (4 μmol/L), RSL3+Fer-1, RSL3+carbenoxolone (100 μmol/L), or RSL3+Fer-1+carbenoxolone. Colony formation assay was used to assess the proliferation ability of the treated cells; wounding-healing assay and Transwell assay were used to assess the invasion and migration ability of the cells. The expression of GPX4 was detected using Western blotting, the levels of lipid ROS were detected using C11 BODIPY 581/591 fluorescent probe, and the levels of Fe2+ were determined with FerroOrange fluorescent probe.@*RESULTS@#RSL3 dose-dependently decreased the survival rate of I-10/DDP cells, and the combined treatment with 2, 4, or 8 μmol/L RSL3 with carbenoxolone, as compared with RSL3 treatment alone, resulted in significant reduction of the cell survival rate. The combination with carbenoxolone significantly enhanced the inhibitory effect of RSL3 on colony formation, wound healing rate (P=0.005), invasion and migration of the cells (P < 0.001). Fer-1 obviously attenuated the inhibitory effects of RSL3 alone and its combination with carbenoxolone on I-10/DDP cells (P < 0.01). RSL3 treatment significantly decreased GPX4 expression (P=0.001) and increased lipid ROS level (P=0.001) and Fe2+ level in the cells, and these effects were further enhanced by the combined treatment with carbenoxolone (P < 0.01).@*CONCLUSION@#Carbenoxolone enhances the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatin-resistant testicular cancer cells by promoting RSL3-induced ferroptosis.


Assuntos
Humanos , Masculino , Carbenoxolona/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Ferroptose , Corantes Fluorescentes/farmacologia , Lipídeos , Neoplasias Embrionárias de Células Germinativas , Espécies Reativas de Oxigênio , Neoplasias Testiculares
16.
Biochem Biophys Rep ; 28: 101181, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934826

RESUMO

The acute liver disease is involved in aberrant release of high-mobility group box 1 (HMGB1). Glycyrrhizin (GL), a traditional Chinese medicine for liver disease, binds to HMGB1, thereby inhibits tissue injury. However the mode of action of GL for chronic liver disease remains unclear. We investigated the effects of glycyrrhizin (GL) and its derivatives on liver differentiation using human iPS cells by using a flow cytometric analysis. GL promoted hepatic differentiation at the hepatoblast formation stage. The GL derivatives, 3-O-mono-glucuronyl 18ß-glycyrrhetinic acid (Mono) and 3-O-[glucosyl (1 â†’ 2)-glucuronyl] 18ß-glycyrrhetinic acid increased AFP+ cell counts and albumin+ cell counts. Glucuronate conjugation seemed to be a requirement for hepatic differentiation. Mono exhibited the most significant hepatic differentiation effect. We evaluated the effects of (±)-2-(2,4-dichlorophenoxy) propionic acid (DP), a T1R3 antagonist, and sucralose, a T1R3 agonist, on hepatic differentiation, and found that DP suppressed Mono-induced hepatic differentiation, while sucralose promoted hepatic differentiation. Thus, GL promoted hepatic differentiation via T1R3 signaling. In addition, Mono increased ß-catenin+ cell count and decreased Hes5+ cell count suggesting the involvement of Wnt and Notch signaling in GL-induced hepatic differentiation. In conclusion, GL exerted a hepatic differentiation effect via sweet receptor (T1R3), canonical Wnt, and Notch signaling.

17.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638588

RESUMO

BACKGROUND: carbenoxolone, which is a derivative of glyceretic acid, is actively used in pharmacology for the treatment of diseases of various etiologies. In addition, we have shown carbenoxolone as an effective inducer of mitochondrial permeability transition pore in rat brain and liver mitochondria. METHODS: in the course of this work, comparative studies were carried out on the effect of carbenoxolone on the parameters of mPTP functioning in mitochondria isolated from the liver of control and alcoholic rats. RESULTS: within the framework of this work, it was found that carbenoxolone significantly increased its effect in the liver mitochondria of rats with chronic intoxication. In particular, this was expressed in a reduction in the lag phase, a decrease in the threshold calcium concentration required to open a pore, an acceleration of high-amplitude cyclosporin-sensitive swelling of mitochondria, as well as an increase in the effect of carbenoxolone on the level of mitochondrial membrane-bound proteins. Thus, as a result of the studies carried out, it was shown that carbenoxolone is involved in the development/modulation of alcohol tolerance and dependence in rats.


Assuntos
Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Carbenoxolona/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Animais , Cálcio/metabolismo , Ciclosporina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ratos
18.
Diabetologia ; 64(6): 1389-1401, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33710396

RESUMO

AIMS/HYPOTHESIS: Skeletal muscle is a key target organ for insulin's actions and is the main regulator of blood glucose. In obese individuals and animal models, there is a chronic low-grade inflammatory state affecting highly metabolic organs, leading to insulin resistance. We have described that adult skeletal muscle fibres can release ATP to the extracellular medium through pannexin-1 (PANX1) channels. Besides, it is known that high extracellular ATP concentrations can act as an inflammatory signal. Here, we propose that skeletal muscle fibres from obese mice release high levels of ATP, through PANX1 channels, promoting inflammation and insulin resistance in muscle cells. METHODS: C57BL/6J mice were fed with normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. Muscle fibres were isolated from flexor digitorum brevis (FDB) muscle. PANX1-knockdown FDB fibres were obtained by in vivo electroporation of a short hairpin RNA Panx1 plasmid. We analysed extracellular ATP levels in a luciferin/luciferase assay. Gene expression was studied with quantitative real-time PCR (qPCR). Protein levels were evaluated by immunoblots, ELISA and immunofluorescence. Insulin sensitivity was analysed in a 2-NBDG (fluorescent glucose analogue) uptake assay, immunoblots and IPGTT. RESULTS: HFD-fed mice showed significant weight gain and insulin resistance compared with NCD-fed mice. IL-6, IL-1ß and TNF-α protein levels were increased in FDB muscle from obese mice. We observed high levels of extracellular ATP in muscle fibres from obese mice (197 ± 55 pmol ATP/µg RNA) compared with controls (32 ± 10 pmol ATP/µg RNA). ATP release in obese mice fibres was reduced by application of 100 µmol/l oleamide (OLE) and 5 µmol/l carbenoxolone (CBX), both PANX1 blockers. mRNA levels of genes linked to inflammation were reduced using OLE, CBX or 2 U/ml ATPase apyrase in muscle fibres from HFD-fed mice. In fibres from mice with pannexin-1 knockdown, we observed diminished extracellular ATP levels (78 ± 10 pmol ATP/µg RNA vs 252 ± 37 pmol ATP/µg RNA in control mice) and a lower expression of inflammatory markers. Moreover, a single pulse of 300 µmol/l ATP to fibres from control mice reduced insulin-mediated 2-NBDG uptake and promoted an elevation in mRNA levels of inflammatory markers. PANX-1 protein levels were increased two- to threefold in skeletal muscle from obese mice compared with control mice. Incubation with CBX increased Akt activation and 2-NBDG uptake in HFD fibres after insulin stimulation, rescuing the insulin resistance condition. Finally, in vivo treatment of HFD-fed mice with CBX (i.p. injection of 10 mg/kg each day) for 14 days, compared with PBS, reduced extracellular ATP levels in skeletal muscle fibres (51 ± 10 pmol ATP/µg RNA vs 222 ± 28 pmol ATP/µg RNA in PBS-treated mice), diminished inflammation and improved glycaemic management. CONCLUSIONS/INTERPRETATION: In this work, we propose a novel mechanism for the development of inflammation and insulin resistance in the skeletal muscle of obese mice. We found that high extracellular ATP levels, released by overexpressed PANX1 channels, lead to an inflammatory state and insulin resistance in skeletal muscle fibres of obese mice.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Obesos , Obesidade/etiologia
19.
Colloids Surf B Biointerfaces ; 202: 111670, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33740634

RESUMO

Carbenoxolone (CBX) is a semi-synthetic plant derivative with pleiotropic pharmacological properties like anti-microbial and anti-inflammatory activities. Though approved for treatment of gastric ulcers, its use is limited due to adverse effects such as cytotoxicity. Bovine serum albumin (BSA) is a natural, non-toxic protein with high water-solubility and low immunogenicity, and is widely used as a nanocarrier for targeted drug delivery. In the present study, controlled release BSA-CBX nanoparticles (NPs) were synthesized by desolvation method to reduce drug cytotoxicity. These NPs showed desirable physicochemical properties such as particle size (∼240 nm), polydispersity index (0.08), zeta potential (-7.12 mV), drug encapsulation efficiency (72 %), and were stable for at least 3 months at room temperature. The drug was released from the BSA-CBX NPs in a biphasic manner in vitro following non-fickian diffusion. Computational analysis determined that the binding between BSA and CBX occurred through van der Waals forces, hydrophobic interactions, and hydrogen bonds with 93 % steric stability. Further, the cytotoxic assays demonstrated ∼1.8-4.9-fold reduction in cytotoxicity using three human cell lines (A549, MCF-7, and U-87). Subsequently, this novel CBX formulation with BSA as an efficient carrier can potentially be used for diverse biomedical applications.


Assuntos
Nanopartículas , Soroalbumina Bovina , Carbenoxolona , Simulação por Computador , Portadores de Fármacos , Humanos , Tamanho da Partícula
20.
Gen Comp Endocrinol ; 305: 113734, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548254

RESUMO

Regulation of glucocorticoids (GCs), important mediators of physiology and behavior at rest and during stress, is multi-faceted and dynamic. The 11ß hydroxysteroid dehydrogenases 11ß-HSD1 and 11ß-HSD2 catalyze the regeneration and inactivation of GCs, respectively, and provide peripheral and central control over GC actions in mammals. While these enzymes have only recently been investigated in just two songbird species, central expression patterns suggest that they may function differently in birds and mammals, and little is known about how peripheral expression regulates circulating GCs. In this study, we utilized the 11ß-HSD inhibitor carbenoxolone (CBX) to probe the functional effects of 11ß-HSD activity on circulating GCs and central GC-dependent gene expression in the adult zebra finch (Taeniopygia guttata). Peripheral CBX injection produced a marked increase in baseline GCs 60 min after injection, suggestive of a dominant role for 11ß-HSD2 in regulating circulating GCs. In the adult zebra finch brain, where 11ß-HSD2 but not 11ß-HSD1 is expressed, co-incubation of micro-dissected brain regions with CBX and stress-level GCs had no impact on expression of several GC-dependent genes. These results suggest that peripheral 11ß-HSD2 attenuates circulating GCs, whereas central 11ß-HSD2 has little impact on gene expression. Instead, rapid 11ß-HSD2-based regulation of local GC levels might fine-tune membrane GC actions in brain. These results provide new insights into the dynamics of GC secretion and action in this important model organism.


Assuntos
Glucocorticoides , Aves Canoras , 11-beta-Hidroxiesteroide Desidrogenases , Animais , Carbenoxolona/farmacologia , Expressão Gênica , Glucocorticoides/farmacologia , Hidroxiesteroide Desidrogenases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...